Publications:
(Listings in Mathematical Reviews) * denotes undergraduate coauthor
 C. Fletcher* and J. S. Howell. Dynamic modeling of
nontargeted and targeted advertising strategies in an oligopoly.
Submitted May 2016. arXiv preprint
 J. S. Howell. Prestructuring sparse matrices with dense rows and columns via null space methods. Submitted May 2016. arXiv preprint
 D. S. Boucher and J. S. Howell. Solubility Characteristics of C60 and PCBM. J. Phys. Chem. B, 120(44), 2016, 1155611566. DOI Link
 N. Kuthirummal, G. Smith, L. Lopez*, R. Podila, J. S.
Howell, C. Dun, and A. M. Rao. Synthesis and characterization of
Arannealed zinc oxide nanostructures. AIP Advances, 6, 095225
(2016). DOI Link
 J. S. Howell, I. Lasiecka, and J. T. Webster.
Quasistability and exponential attractors for a nongradient
systemapplications to pistontheoretic plates with internal
damping. Evolution Equations and Control Theory, 5(4), 2016,
567603. DOI Link
 J. S. Howell, M. Neilan, and N. J. Walkington. A
dualmixed finite element method for the Brinkman problem. SMAI J.
Comput. Math., 2, 2016, 117. Journal Link
 J. S. Howell and D. S. Boucher. Temperature
Dependence of the Convex Solubility Parameters of Organic
Semiconductors. J. Polym. Sci. Part B: Polym. Phys., 54(1), 2016,
8188. DOI Link
 J. S. Howell, B. O. Stephens*, and D. S. Boucher.
Convex solubility parameters for polymers. J. Polym. Sci. Part B:
Polym. Phys., 53(16), 2015, 10891097. DOI Link
 J. S. Howell, H. Lee, and S. Xu. Finite element
approximation of viscoelastic flow in a moving domain.Elect. Trans.
Numer. Anal., 41, 2014, 306–327. Journal Link
 J. S. Howell, H. Lee, and S. Xu. Numerical study of a
viscoelastic flow in a moving domain. Proceedings of the 8th
International Conference on Scientific Computing and Applications,
Contemp. Math. Series no. 586, Amer. Math. Soc., 2013, 181188. Link
 J. S. Howell and N. J. Walkington. Dualmixed finite element methods for the NavierStokes equations. ESAIM: Mathematical Modelling and Numerical Analysis, 47, 2013, 789805. DOI
link.

J. S. Howell, H. Lee, and S. Xu. Numerical study of a viscoelastic flow in a moving domain.
Proceedings of the 8th International Conference on Scientific Computing
and Applications, Contemp. Math. Series no. 586, Amer. Math. Soc., ,
2013, 181188. DOI link.
 J. M. Connors and J. S. Howell. A fluidfluid interaction method using decoupled subproblems and differing time steps. Numer. Methods PDE, 28(4), 2012, 12831308. DOI
link.
 J. M. Connors, J. S. Howell, and W. J. Layton. Decoupled timestepping methods for fluidfluid interaction. SIAM J. Numer. Anal. 50(3), 12971319. DOI link.
 J. S. Howell. Approximation of generalized
Stokes problems using dualmixed finite elements without
enrichment. Inter. J. Numer. Methods
Fluids 67(2) 2011, 247–268. DOI link
 J. S. Howell and N. J. Walkington. Infsup conditions for twofold saddle point problems. Numer. Math. 118(4) 2011, 663693. DOI link
 J. S. Howell. Dualmixed finite element
approximation of Stokes and nonlinear Stokes problems using
tracefree velocity gradients. J. Comput. Appl.
Math. 231(2) , 2009, 780792. DOI
link.
 J. M. Connors, J. S. Howell, and W. J. Layton. Partitioned timestepping for a
twodomainparabolic problem. SIAM J. Numer. Anal. 47(5) 2009, 35263549. DOI link
 J. S. Howell. Computation of viscoelastic
fluid flows using continuation methods. J. Comput.
Appl. Math. 225(1) 2009, 187201. DOI
link.
 V. J. Ervin, J. S. Howell, I. Stanculescu. A dualmixed approximation
method for a threefield model of a nonlinear generalized
Stokes problem. Comput. Methods Appl. Mech. Engrg.
197(3340) 2008, 28862900. DOI
link.
 V. J. Ervin, J. S. Howell, H. Lee. A twoparameter
defectcorrection method for computation of steadystate
viscoelastic fluid flow. Appl. Math. Comput. 196(2)
2008, 818834. DOI
link.
 J. S. Howell. Numerical approximation of
shearthinning and JohnsonSegalman viscoelastic fluid
flows. Ph.D. Thesis, Clemson University, 2007. PDF (2Mb)
 S. Gao, J. Howell. A
general polynomial sieve. Designs and codesa
memorial tribute to Ed Assmus. Des. Codes
Cryptogr. 18 (1999), no. 13, 149157. DOI
link.
 S. Gao, J. Howell, D. Panario. Irreducible polynomials of
given forms. Finite fields: theory, applications,
and algorithms (Waterloo, ON, 1997), 4354,
Contemp. Math., 225, Amer. Math. Soc., Providence,
RI, 1999. DOI link.
 J. Howell.The index
calculus algorithm for discrete logarithms.
Master's Project. Mathematical Sciences, Clemson
University (1998). PDF
(6Mb)
Presentations:
 Where the Nonzero Things Are, Colloquium, Department of Mathematics, College of Charleston, September 2016.
 Prestructuring sparse matrices with dense rows for direct solvers, AMS Southeastern Sectional Meeting, Athens, GA, March 2016.
 Dualmixed finite element methods for the Brinkman problem, SIAM Conference on Computational Science and Engineering (CSE15), Salt Lake City, UT, March 2015.
 An early course on modeling and computation with differential equations, AMS/MAA Joint Mathematics Meetings, Baltimore, MD, January 2014.
 Infsup conditions and mixed finite element methods, Computational Mathematics Seminar, Clemson University, May 2013.
 To Be Continued...A Brief Introduction to Continuation Methods, Colloquium, Department of Mathematics, College of Charleston, November 2012.
 Dualmixed finite element methods for the NavierStokes Equations, 8th International Conference on Scientific Computing and Applications (SCA2012), Las Vegas, NV, April 2012.
 Numerical analysis and computation of hemodynamical flows, Colloquium, Department of Mathematics, College of Charleston, February 2012.
 Dualmixed finite element methods for the NavierStokes equations, Analysis and PDE Seminar, University of Delaware, Newark, DE, May, 2011.
 Dualmixed finite element methods for the Stokes and
NavierStokes equations, Minisymposium on Algorithm
Analysis, Design and Computation for Turbulent Flows, SIAM
Annual Meeting (AN10), Pittsburgh, PA, July, 2010.
 Compatible dualmixed finite element methods for
fluids, Computational and Applied Mathematics Seminar,
University of Pittsburgh, Pittsburgh, PA, March 2010.
 Dualmixed finite element methods for fluids,
Mathematics Colloquium,Clarkson University, Potsdam, NY,
February 2010.
 Modeling and simulation of problems in fluid
dynamics, Colloquium, The Wilkes Honors College of
Florida Atlantic University, Jupiter, FL, January 2010.
 Dualmixed finite element methods for fluids,
Colloquium, Missouri University of Science \&
Technology, Rolla, MO, January 2010.
 Dualmixed finite element methods for fluids,
Special Guest Lecture, Louisiana State University Center
for Computation & Technology, Baton Rouge, LA, January
2010.
 Analysis and approximation of coupled fluid/elastic
structure models arising in vascular fluid dynamics.
CNA Working Group on Recent Advances in Analysis and
Approximation of Fluids, Carnegie Mellon University,
Pittsburgh, PA, September 2009.
 DualMixed Finite
Element Methods for the Steady Stokes Problem Using
ArnoldWinther Tensors, Finite
Element Circus, University of Delaware, Newark, DE,
April 2009.
 Approximating the
stress tensor in nonlinear generalized Stokes
problems, Finite
Element Circus and Rodeo, Louisiana State University
Center for Computation & Technology, Baton Rouge, LA,
March 2008.
 DualMixed
Approximation of Generalized Stokes Problems,
Computational and Applied Mathematics Seminar, University
of Pittsburgh, Pittsburgh, PA, September 2007.
 Finite element
approximation of partial differential equations using
FreeFEM++ (with J. Chrispell), USC SIAM Student
Chapter Seminar, Columbia, SC, February 2007.
 Irreducible polynomials of given forms, Fq4  The
Fourth International Conference on Finite Fields and
Applications, Waterloo, ON, August 1997.
Contact Info:
Jason S Howell;
Department of Mathematics; College of Charleston; 66 George Street; Charleston, SC 29424; 8439531016 (office); 8439531410 (fax);
email: howelljs at cofc dot edu
Copyright � 2012 Jason
Howell,
please send me any questions or comments.
